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Applied machine learning as a driver for
polymeric biomaterials design

Samantha M. McDonald 1, Emily K. Augustine2, Quinn Lanners 3,
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Polymers are ubiquitous to almost every aspect of modern society and their
use in medical products is similarly pervasive. Despite this, the diversity in
commercial polymers used in medicine is stunningly low. Considerable time
and resources have been extended over the years towards the development of
new polymeric biomaterials which address unmet needs left by the current
generation of medical-grade polymers. Machine learning (ML) presents an
unprecedented opportunity in this field to bypass the need for trial-and-error
synthesis, thus reducing the time and resources invested into new discoveries
critical for advancing medical treatments. Current efforts pioneering applied
ML in polymer design have employed combinatorial and high throughput
experimental design to address data availability concerns. However, the lack of
available and standardized characterization of parameters relevant to medi-
cine, including degradation time and biocompatibility, represents a nearly
insurmountable obstacle to ML-aided design of biomaterials. Herein, we
identify a gap at the intersection of applied ML and biomedical polymer
design, highlight current works at this junction more broadly and provide an
outlook on challenges and future directions.

Many of the machine learning (ML) approaches at the intersection
of medicine and chemistry focus on small molecule synthesis for
drug discovery1–7. As shown in Fig. 1, there is a considerable gap in
strategies targeting polymers in medicine despite medical poly-
mers representing an 18.4-billion-US dollar global market as of
2021– appearing in diverse applications such as catheters, coat-
ings, implants, etc8–10.

Among the bottlenecks experienced in the development of
commercial medical polymers, the research and design of such
materials represent a huge investment of time, money, and energy.
New materials are often designed through experimental intuition and
further developed through trial-and-error synthesis. This process is
not only economically inefficient, but also often fails to produce
polymers that have all the target properties for an intended applica-
tion. This is due, in part, to the fact that polymers exhibit less pre-
dictable/intuitive structure-property relationships than smallmolecule
counterparts due to the greater number of variables which dictate

their properties—namely, composition, molecular mass, inter-
molecular forces, and architecture11,12. Even within a class of compo-
sitionally similar polymers, these relationships can be nonlinear and
hard to identify, which makes it difficult to design materials for a
specific property outcome. Thus, employing ML as a tool that is
sensitive to patterns in data which are critically important, but indis-
cernible to humans, could accelerate the development of translation-
ally relevant polymers13.

Most work at the intersection of ML and polymer design more
broadly can be separated into two general tasks:
1. Property prediction (or forward problem design): Given a polymer

structure, predict specified properties of interest. This approach
is highly valuable for the screening of candidate materials,
enabling synthesis of the most promising candidate rather than
the whole library.

2. Structure generation (or inverse problem design): Given properties
of interest, predict polymeric structures that may demonstrate
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the desired properties. This strategy can expedite the materials
design process and remove limitations set by user intuition.

Applications of ML are not limited to polymer design and have
also been successfully implemented for process optimization and
advancing our understanding of structure-property relationships
within these complex systems. Ultimately, accessing the next genera-
tion of polymeric biomaterials will more than likely require some
combination of these approaches. To quote Anne Fischer, a DARPA
program manager for accelerated molecular discovery:

“It’s not about replacing chemists. It’s about giving chemists the
tools to allow them to implement and apply the chemistry and allow
them to be creative high-level thinkers.”14

Challenges with data availability
Advancements in property prediction and inverse modeling in related
fields have been driven primarily by relatively data-hungry supervised
learning algorithms, including deep learning, random forests, gaussian
process models15–18. Such models are very promising for developing
advancements in polymer design given the complexity of polymer
systems. However, they often require more labeled data than the
typical experimentalist produces to discover more fine-tuned inter-
actions with limited prior understanding of the system.

As such, data availability represents a primary obstacle for this
field irrespective of the approach13. Experimental datasets are often
small (on the order of 1–20 unique structures) and incompatible with
each other due to differences in experimental methods and/or data
analysis. Property handbookswhich serve as reliable references for the
experimentalist are often compiled with only the polymer name or
with limited structural information19,20. Polymers are not always named
according to the conventions of the International Union of Pure and
Applied Chemistry, which makes the name a poor representation of
the materials’ structure. Additionally, these sources typically are not
easily exportable, which is necessary for implementation in code.
Online databases, as shown in Table 1, contain thousands of polymers
with some of their associated properties, structural images, and some
additional methods of identification13,21–23. However, both polymer
handbooks and online databases suffer fromhigh data sparsity and are
limited in the properties they contain. This limits the properties that
can be predicted with supervised learning. For example, it would be
difficult to create a labeled dataset for training a model to predict
degradation time given that this property is often not included in
current databases. This also affects what properties can be used as
input features (e.g., molecular mass) which may limit prediction
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Fig. 1 | Data set sizes documented for applications within polymer chemistry.
There are only a few examples of ML applied to biomedical polymer questions
(n = the number of papers for each application). Data availability is a considerable
concern for ML approaches within many biomedical applications as demonstrated
by the relatively few number of papers which have been published on this topic as
well as the small size of the data sets used in these existing approaches.

Ta
b
le

1
|S

um
m
ar
y
o
f
cu

rr
en

t
o
n
lin

e
d
at
ab

as
es

D
at
ab

as
eR

ef
#
o
f
P
o
ly
m
er
s

P
o
ly
m
er

C
la
ss
(e
s)

P
ro
p
er
ti
es

D
ra
w
b
ac

ks

Po
ly
In
fo

11
3a

31
,4
9
5

D
iv
er
se

Ph
ys
ic
al
,o

p
tic

al
,t
he

rm
al
,e

le
ct
ri
ca

l,
p
h
ys
ic
o
ch

em
ic
al
,r
he

ol
og

ic
al
,s

ol
ut
io
n,

m
ec

ha
ni
ca

l

K
ha

za
na

23
b

9
6
5

C
on

ju
g
at
ed

p
ol
ym

er
s,

co
m
m
er
ci
al

th
er
m
op

la
st
ic
s,

p
ol
ye

st
er
s

El
ec

tr
ic
al
,o

p
tic

al

Po
ly
m
er
s:

a
Pr
op

er
ty

D
at
ab

as
e1

14
a

30
,0
0
0

D
iv
er
se

Ph
ys
ic
al
,o

p
tic

al
,t
he

rm
al
,e

le
ct
ri
ca

l,
p
h
ys
ic
o
ch

em
ic
al
,r
he

ol
og

ic
al
,m

ec
ha

n
ic
al

Po
ly
m
er

Pr
op

er
ty

Pr
ed

ic
to
r
an

d
D
at
ab

as
e1

15
a

21
2–

6
52

4
C
on

ju
g
at
ed

p
ol
ym

er
s,

co
m
m
er
ci
al

th
er
m
op

la
st
ic
s

S
ol
ut
io
n
,t
he

rm
al

M
at
W
eb

11
6
a

9
7,
6
35

C
om

m
er
ci
al
ly

av
ai
la
b
le

p
ol
ym

er
s

Ph
ys
ic
al
,o

p
tic

al
,t
he

rm
al
,e

le
ct
ri
ca

l,
p
h
ys
ic
o
ch

em
ic
al
,r
he

ol
og

ic
al
,m

ec
ha

n
ic
al

B
lo
ck

C
op

ol
ym

er
Ph

as
e
B
eh

av
io
r

D
at
ab

as
e1

17
a

53
0
0

B
lo
ck

co
p
ol
ym

er
s

Ph
as
e
m
ea

su
re
m
en

ts
fo
r
b
lo
ck

co
p
ol
ym

er
s

-

El
ec

tr
o
n
A
ffi
ni
ty

an
d
Io
ni
za
tio

n
Po

te
nt
ia
l

D
at
a6

2c
4
2,
9
6
6

H
al
og

en
at
ed

p
ol
ym

er
s,

co
nj
ug

at
ed

p
o
ly
m
er
s,

ch
ar
g
ed

p
ol
ym

er
s

C
op

ol
ym

er
el
ec

tr
on

af
fi
ni
tie

s
an

d
io
ni
za
tio

n
p
ot
en

tia
ls

-

=
fe
e
or

ac
ad

em
ic

af
fi
lia

tio
n
re
q
ui
re
d
,

=
no

p
ub

lic
A
PI

or
ab

ili
ty

to
d
ow

nl
oa

d
,

=
no

st
ru
ct
ur
e
in
fo
rm

at
io
n,

=
un

st
an

d
ar
d
iz
ed

/t
ex

t
en

tr
ie
s,

=
ca

nn
ot

d
ow

nl
oa

d
th
e
w
ho

le
d
at
as
et
/c
an

on
ly

d
ow

nl
oa

d
a
su

b
se

t.
a e
xp

er
im

en
ta
ld

at
a.

b
ex

p
er
im

en
ta
la

nd
si
m
ul
at
ed

d
at
a.

c s
im

ul
at
ed

d
at
a.

Perspective https://doi.org/10.1038/s41467-023-40459-8

Nature Communications |         (2023) 14:4838 2



performance. Additionally, these data sources are often not accessible
—frequently requiring an academic affiliation, have no easy way to
download the data, and/or expect a fee before use.

Experimental datasets containing properties of interest (e.g., in
vivo degradation time, cytotoxicity) for the design of biomedical
polymers specifically demonstrate high scarcity with respect to the
number and size of available datasets. Figure 1 shows efforts in ML
applied to biomedical polymers by application. This scarcity persists
for many reasons, including the time and cost associated with char-
acterizing in vivo properties, lack of standardization within in vitro
methods, and the lack of applicability of some biomedical properties
in other fields of interest to polymers (e.g., drug release profile has
little applicability for energy or sustainable materials).

Previous work in ML applied to polymer design has addressed
data availability concerns by simulating data24–26. This strategy is par-
ticularly promising for generating labeled datasets for properties
which are not commonly characterized because they are difficult to
characterize or only relevant for niche applications. Batra et al. used
simulated data to train a property prediction algorithm as part of an
inverse design approach. In particular, they used density functional
theory composition to simulate polymer bandgap labels, one of the
target properties in their approach, since experimental values of this
property are less common in the literature25. Existing molecular
dynamics simulations of biomedical properties, such as cytotoxicity,
couldbeused to generate datasets for supervisedMLanddemonstrate
the utility of simulating other medical properties27,28. However, it
should be noted that this approach can result in error propagation
through to the final algorithm, so special care should be taken to
confirm the fidelity of the simulation results.

Transfer learning builds a ML model by using a smaller dataset to
finetune or adapt a model that was originally trained for a similar task
on a larger dataset29. This approach has been extremely successful in
other fields and within chemistry for overcoming data limitations and
improving model performance29–32. Using transfer learning, a model
pretrained on a large simulated dataset can be finetuned using a
smaller experimental dataset to address error propagation concerns,
while still reducing the amount of necessary experimental data.
Examples of transfer learning for scarce properties from models
trained on physically related properties also present a route to devel-
oping stronger models with less experimental data33. However, trans-
fer learning still often requires more data than the typical
experimentalist generates.

Other approaches have leveraged high throughput or automated
experiments to generate data more quickly than traditional
synthesis34–36. The most common high-throughput strategies use
continuous-flow systems, plate-based methods, or reactor arrays to
run many polymerization reactions simultaneously37–44. However,
other experimental setups, such as microfluidic reactors or PCR ther-
mocycler setups, may be favorable depending on the property of
interest and the number of variables which must be controlled45,46.
These principles can be automated via programmable robots to fur-
ther eliminate the need for human intervention and to run reactions at
times unfavorable for researchers43,44,47. High-throughput approaches
are generally promising for properties which can bemeasured directly
with small quantities of polymer (e.g., water uptake, cytotoxicity) and
can be combined with methods which can accommodate relatively
small datasets, such as active learning or Bayesian optimization36,48,49.
Within regenerative medicine, high-throughput methods have shown
promise for the efficient generation of polymer excipients, and anti-
microbial polymer discovery40–42. Generating datasets via these exist-
ing approaches could be a more immediately achievable way to apply
ML to biomedical polymer design. However, these strategies may be
hard to scale for properties which require larger quantities of polymer
and/or which require processing steps, but can still be employed to
reduce the active synthesis time for experimentalists.

Additionally, chain-growth polymerizations, such as ring-opening
polymerization and reversible addition fragmentation chain transfer
polymerization, have been themethods of choice for high-throughput
experiments37–46. There is a notable gap of high-throughput strategies
for step-growth polymerizations even though these structures are
common among commercially available medical polymers and are of
interest for developing new medical polymers due to backbone het-
eroatoms which enable degradability. Poly(lactic acid) (PLA), poly(-
urethanes) and nylons are classes of polymers commonly synthesized
via step-growth polymerization methods and employed in a diverse
range of commercial medical applications, including medical tubing,
short-term implants, and sutures50–53. Despite this, there are only a
couple of examples of high-throughput strategies which target step-
growth type reactions47,54. Thus, the development of scalable high-
throughput methods which include step-growth polymerizations and
biomedical properties would greatly advance the available data for
applied ML.

Ultimately, the need for an accessible, high-quality data source is
undeniable. The recently released Community Resource for Innova-
tion in Polymer Technology (CRIPT) is one potentially scalable archi-
tecture which shows immense promise toward this goal, focusing on
the curation of current and future data rather than trying to solve the
curation of historical data55. However, the success of this approach is
contingent on widespread contribution to the database by experi-
mentalists and the current number of polymers contained in the
database is unclear. Additionally, emerging databases must still
address polymer naming inconsistencies which has driven the use of
BigSMILES strings and knowledge graphs as labels in lieu of traditional
names56. The adoption of alternative labeling conventions should be
widespread to facilitate interoperability between databases and
researchers’ familiaritywith thesenew labels.Guidelines for and strong
examples of data-sharing are outlined in the FAIR principles. Briefly,
these principles identify good data-sharing platforms as being: Find-
able, Accessible, Interoperable, and Reusable57. Updating existing
platforms to abide by these principles would considerably lower the
barrier to applying ML to a broader set of polymer design problems.
Similarly, these principles should be at the core of future data-sharing
ventures.

Encoding chemical information
Encoding the chemical information of polymers into a machine-
readable format is an essential and nontrivial step for ML in this area.
Polymer structures are complex inputs which have been represented
through molecular graphs, monomer simplified molecular-input line-
entry system (SMILES), and polymer SMILES representations (BigS-
MILES, curlySMILES, etc)13,58,59. SMILES representations have been a
popular choice as they canbe one-hot encoded (a group of bits among
which the combinations of values are only those with a single high [1]
bit and all the others low [0]) and are more easily interpreted by
experimentalists who may not have strong computer science skills.
Most approaches opt for training algorithms on repeat unit SMILES
which makes it difficult to deal with structures which contain more
than one repeat unit (e.g., copolymers) or exhibit complex archi-
tecture (e.g., star-shape)33,60. BigSMILES and curlySMILES represent
polymer extensions which factor in the limitations intrinsic to the
original SMILES syntax. However, these representations are not all-
inclusive and may require passing additional variables, such as
monomer stoichiometry and polymer dispersity. Similarly, the
encoding of SMILES strings results in a high dimensional input which is
not suitable for allML approaches depending on the complexity of the
model and data set size.

Molecular descriptors can be used in lieu of an encoded SMILES
input to reduce the number of input features. This approach works
well for systems which have low structural diversity and/or with algo-
rithms that cannot accommodate encodings with connectivity
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information, such as linear models, support vector machines and
random forest61. As discussed in the Potentially Helpful Tools section,
existing Python packages have been developed to automate the gen-
eration of these descriptors.

Graph representations have alsodemonstratedpromising success
as featurization methods which capture other polymer features (e.g.,
monomer stoichiometry, molar mass distribution) in addition to
connectivity information62. While thesemethods are less interpretable
than string counterparts, they are more complete representations of
polymer systems.

Potentially helpful tools
An abundance of Python packages for chemistry have been compre-
hensively curated into a repository on GitHub63. Many tasks have been
tackled through these packages including, but not limited to structure
representation (e.g., RDkit), database wrappers (e.g., pubchempy,
ChemSpiPy) and atomistic simulations. Table 2 shows a collection of
Python packages focused particularly on polymer chemistry. E3 and
E4, may be helpful in generating simulated datasets. Other packages
like XenonPy or the BigSMILES parser (Table 2 E1 and E5) can be
incorporated into approaches directly to reduce development time.

Current work in ML applied to polymer chemistry
Property prediction and inverse design, as discussed in the following
section, represent the two most prominent supervised tasks within
machine learning applied to polymer chemistry. Unsupervised meth-
ods, such as self-organizing maps, are much less common within
polymer chemistry but can be used to explore structure-property
correlations and visualize high dimensional data36,64. While this section
does not discuss implementation at length, Meyer et al. present a
thorough tutorial on how to apply ML to questions within polymeric
biomaterials and model selection has been discussed more broadly
elsewhere65–67. While Python is the language of choice for ML applied

to chemical questions, other languages, like R and C++, can be used to
buildMLmodels. It should also be noted thatMLmethods are in an era
of explosive growth,whichmayprovide creative solutions toproblems
not yet solved within polymer chemistry.

Property prediction
Property prediction tasks (workflow described in Fig. 2) represent the
most explored area of this emerging field due to the straightforward
problem statement, the accessibility of easy to implement algorithms,
and the potential to achieve useful results even with smaller datasets
(Table 3). These tasks can be considered on their own as proof-of-
concept work, implemented for candidate screening and/or used to
develop quantitative structure property relationships. It should be
noted that it is important to be careful drawing quantitative structure-
property relationships from predictive models because, unless care-
fully designed,model feature importance alone does not signify causal
importance. As shown in Table 3, thermal properties are a popular
target in property prediction tasks due to their relevance to a variety of
fields, a greater degree of standardization between data sources, and
their characterization formost new polymers in the literature. Outside
of commonly characterized properties, property prediction tasks are
only beginning to be applied to properties of exclusive interest to
biomedically relevant polymers, physiological degradation time and
biocompatibility (see ML for polymer chemistry in medical applica-
tions section).

Random forest and recurrent neural network (RNN) algorithms
have been the primary choice for polymer property prediction tasks
(see Table 3). This is symptomatic of the input data and the size of the
chosen data set. Random forests and other ensemble methods can
discover nonlinear interactions while often not requiring asmuch data
as deep learning algorithms to perform well. Additionally, RNNs per-
form well with textual input data, which is advantageous for approa-
ches which use a SMILES string to encode polymer structures. In both

Molecular 
Features

Predicted 
PropertiesOutput

Prediction Algorithim
Deep 

Learning
Ensemble 
Methods

Data
Preprocessing

& Encoding Synthesis � 
Characterization

Input

Fig. 2 | General ML workflow for property prediction tasks. Data (i.e., polymers
with knownproperties)must be preprocessed and encoded before passing desired
input (e.g., encoded chemical structure, molecular descriptors) into a prediction
algorithm. Irrespective of algorithm choice, training proceeds by tuning the model
hyperparameters to minimize prediction error. The trained algorithm can then be

used to screen polymer candidates prior to experimental synthesis & character-
ization.While deep learning andensemblemethods are themostwidelyused, other
supervisedmethodshave been employed (see Table 3) andmaybe preferred based
on the application.

Table 2 | Python polymer packages

Entry PackageRef Description

E1 XenonPy32 Various pretrained models for different properties of interest and other ML tools related to chemical problems (including
polymers)

E2 Topoly118, PSP119, PysoftK120 Toolkits for polymer topology and structure

E3 pysimm121, Polyply122, m2p123 Open-source polymer simulations and chain generation

E4 PMD124 High throughput molecular dynamic simulations for a variety of properties

E5 BigSMILES Parser125 Parses BigSMILES strings

E6 Matminer126–138 Materials data miner from online databases
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cases, existing Python packages facilitate the easy implementation of
these models as much of the mathematical ‘nitty gritty’ has been
abstracted away, allowing users to simply call and apply the algorithms
to a dataset of choice. However, ease of implementation should be
balanced with an understanding of the limitations associated with the
chosen ML method to ensure correct usage.

Investigation into other ML approaches could expand this task
with respect to model performance and/or the accessibility of the
results. Physics-informedmodels can improve prediction accuracy and
model robustness in smaller data regimes68,69. The underlying physics
of a system can be introduced through data augmentation. Interven-
tions in the model architecture can also be guided by domain knowl-
edge, and/or introducing constraints (often on the model’s loss
function) basedonwhat is physically possible69. For example, Bradford
et al. included the Arrhenius equation in the final layer of their pre-
dictive model to improve the performance of ionic conductivity pre-
dictions for polymer electrolytes68. These types of improvements to
the model architecture would benefit greatly from collaboration
between polymer chemists and ML experts.

Compared to black-box approaches (i.e., models which do not
provide information about feature importance like deep learning
methods), interpretableMLalgorithms (i.e.,models which information
about feature importance can be extracted like random forest algo-
rithms) create models that are more transparent, easier to trouble-
shoot, and facilitate understanding of the chemical system70,71.
Alternatively, black-box methods can be supplemented with models

like Shapely Additive exPlanations (SHAP) and Locally Interpretable
Model-agnostic Explanations (LIME) to assist in the interpretation of
predictions72,73. These modeling approaches can identify potential
structure-property relationships and elucidate complex design rules.
However, experimentalists must note that predictive ML models can-
not be used to make causal claims and any insight provided by such
models should be validated through experimentation. Conversely,
causal ML algorithms are designed to discover causal relationships74.
These methods can be beneficial for causal inference but are often
more difficult to implement and are only valid in certain settings. Thus,
researchers should ensure that they fully understand how to properly
implement these methods before using them for causal discovery.
Within polymer design for regenerative medicine, Kumar et al.
demonstrated the utility of SHAP and causal ML algorithms for iden-
tifying structure-property relationships associated with genetic cargo
delivery from polymer systems73. Application of interpretable models,
interpretation methods, and causal ML should be extended to other
applications for biomedical polymers to further advance domain
knowledge within these systems.

Structure generation
New polymer structures are often conceived from experimentalist
intuition given their knowledge of existing work. Where property
prediction tasks can be employed to screen candidates for accelerated
materials design, the inverse design approach can train an algorithm
which generates structures given desired properties (Fig. 3). This

Table 3 | Summary of approaches towards property prediction

Property
Class 

Properties Data Set Size Algorithms Used 

Thermal 

Glass Transition Temperature (Tg)39,66,89-96 43 – 17,001 RNN, LSTM, LR, DNN, PLS, 
SVM, RF, RecNN, e-SUSI, GPR

Melt Transition Temperature (Tm)39,90 942 – 12,374 DNN, RF
Specific Heat Capacity39 58 - 133,885 DNN, TL
Thermal Conductivity39 332 DNN

Mechanical 
Tensile Modulus90 306 LR, SVM, RF

T /T  ratio11 440 RNN, MLP
Dynamic Elastic Modulus11 440 RNN, MLP

Solution 
Density39,89,90 48 – 8613 DNN, PLS, LR, SVM, RF

Dissolution Parameter89 48 PLS
Cloud Point97 171 GBDT

Electrical 
Dielectric Constant98 1140 RNN

Electron Affinity29 42,966 wD-MPNN 
Ionization Potential29 42,966 wD-MPNN 

Intrinsic Viscosity Average Molecular Mass99 118 LR, ANN
Functional Group Indices99 81 – 111 LR, ANN

Optical Refractive Index100 527 GPR

Barrier Gas Permeability101 376 - 698 GPR
RNN = recurrent neural network, LSTM = long short-term memory , LR = linear regression, DNN = deep neural 

network, PLS = partial least squares regression, SVM = support vector machine, RF = random forest, RecNN = 

recursive neural network, MLP = multilayer perceptron, e-SUSI = ensemble supervised self-organizing mapping, 

ANN = artificial neural network, GPR = gaussian process regression, GBDT = gradient-boosted decision tree, TL = 

transfer learning, wD-MPNN = weighted directed message passing neural network, linear method, ensemble 
method, deep learning, other methods.
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approach can overcome constraints introduced by the human imagi-
nationandpreconceivedbeliefs about the complex structure-property
relationships intrinsic to polymers. However, structure generation
represents the most data hungry task due to the complexity of the
models which can accomplish it; thus, big data availability presents a
formidable obstacle.

The implementation of these inverse design approaches has been
well discussed in other perspectives75,76. Briefly, the current efforts in
the inverse design of polymer materials have followed a general
workflow which iterates between generating new structures and pre-
dicting their properties (Fig. 3). This process proceeds by comparing
the predicted properties to the target properties to minimize the dif-
ference between them. New structures can be generated through a
sequence perturbation approach (e.g., Monte Carlo tree search,
sequential Monte Carlo method, genetic algorithm) where a structure
is incrementally changed to reach the property objective (“Generator”
in Fig. 3)33,77,78. Alternatively, unsupervised methods (e.g., variational
autoencoder) can be used to learn the structure-property latent
space25. An interpolation method (e.g., linear interpolation) can then
be used within regions which show higher probabilities for satisfying
the property requirements to generate new structures. These candi-
date generation methods are then paired with other ML algorithms
and/or molecular dynamics methods to predict their properties
(“Property Predictor” in Fig. 3).

While success with these strategies has required considerable
data (900–14,000 polymers), narrowing the scope of the inverse
design problem to one class of polymers has proven successful on
datasets as small as 171 polymers25,33,78,79. These current inverse design
approaches have proceeded via similar workflows; thus, investigation
into other inverse design algorithms (e.g., generative adversarial net-
works) represents a way to expand this field80. Ultimately, inverse
design has the potential to accelerate the discovery of state-of-the-art
materials, but is contingent on the creation of larger, more compre-
hensive datasets and/or the development of methods which can tol-
erate smaller, potentially imbalanced datasets.

ML for polymer chemistry in medical applications
Current work. Mathematical modeling has a well-established role in
understanding the drug release profile from polymer systems; thus, it
is no surprise that work at the intersection of ML and medically-
relevant polymers has focused on drug release behaviors (Fig. 1)81–85.
These approaches primarily target candidate screening methods
through property prediction algorithms including perturbation theory
machine learning (PTML), light gradient boosting machine (GBM),
bagged multivariate adaptive regression splines (MARS), and random
forests. Additionally, property prediction has been a dominant

approach toward predicting surface adsorption/attachment behavior
for antifouling coatings to aid in candidate screening or elucidating
quantitative structure property relationships86–88.

ML has also been applied toward the 3D printing conditions of
tissue engineering scaffolds, 3D printing conditions of carbon doped
polylactic acid for implantable biosensors and favorable conditions to
generate medically-relevant microparticles89,90. Each of these approa-
ches is underpinned by a focus on process optimization applied to a
very narrow class of polymers with respect to structural diversity.
Narrowing the scope of the input data accommodates a smaller
number of observations which is compatible with the reality that bio-
medical properties are not as widely characterized as thermo-
mechanical properties. Process optimization approaches also use less
complicated inputs, such as concentration and printing speed, which
facilitates the generation of larger datasets, more quickly when com-
pared to chemical structure inputs which require synthesis to generate
new observations.

Examples of ML applied to the synthesis of new biomedical
polymers are scarce (Fig. 4). Efforts in high-throughput, combinatorial
design of copolymers have led to discoveries in polymer-mediated
ribonucleoprotein delivery, antibiofouling hydrogels, polymer-protein
hybrids, and 19F MRI agents36,91–93. These approaches leverage a limited
compositional space and fast, simultaneous experiments to overcome
data availability concerns. Additionally, as demonstrated by Reis et al.,
active learning can improve model performance considerably with
only a few additional observations36. The compatibility of active
learning with current experimental workflows makes it a promising
way to introduce machine learning into existing polymer design
problems.

Areas of need. The prediction of polymer properties that are unique
to biomedical applications has lagged behind other achievements in
ML property prediction (Fig. 4). Designing novel biocompatible poly-
mers would benefit greatly from the ability to accurately predict
cytotoxicity and bioactivity as demonstrated by previous work pre-
dicting nanoparticle toxicity94,95. The long timescale of data collection
and non-standardized experimental methods to determine bio-
compatibility limit the generation of ML-viable datasets (Fig. 1 shows
the relatively small size of biomedical data sets compared to non-
biomedical applications).

Additionally, understanding the relationship between polymer
degradation rate and underlying chemical structure is essential to
tailoring biomedical polymers to their functionality and lifetime in the
body. Physiologically degradable polymer systems improve patient
quality of life by eliminating the need for secondary surgeries and
reducing the possibility of long-term complications, such as infection

Target PropertiesInput Generator Property 
Predictor

Structures with 
Desired PropertiesOutput

Property doesn’t 
match target

DataPreprocessing Synthesis �
Characterization

Fig. 3 | General ML workflow for inverse design approaches. Inverse design of
polymers target algorithms which generate new, valid polymer structures with
desired properties from property inputs. As seen in property prediction, datamust
be preprocessed & encoded prior to inverse design. Training involves the genera-
tion of a new structure through sequence perturbations or interpolations within
existing latent spaces (represented here as ‘generator’). The properties of the new

structure are predicted and compared to the target properties (shown as ‘property
predictor’). The algorithms then iterate between these stages until structures with
desired properties are achieved. While training of the ‘generator’ and ‘property
predictor’ are approach-dependent, their hyperparameters may be tuned by
minimizing the prediction error.
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at the implant site. However, there are often differing degradation
behaviors in vivo vs. in vitro which adds to the necessary time and
resources required to develop new physiologically degradable
polymers96,97. Inverse design approaches will greatly expediate the
process of finding polymer structures with the desired biocompat-
ibility and degradation timescale. Investigation into otherMLmethods
which accommodate smaller datasets such as active learning, physics-
informed and interpretablemodels represent current steps that can be
taken to augment existing design approaches. Interpretable models,
particularly, are promising for advancing our fundamental knowledge
of the structure-property relationships which govern these systems in
addition to augmenting experimental efficiency.

There is significant potential for theMLmethods describedherein
to accelerate discoveries for biocompatible polymers in a variety of
biomedical research areas.

Drug delivery and polymer excipients. Extensive research has
focused on developing drug release systems that pair highly tunable
polymeric carriers (e.g. hydrogels, films, fibers), with target small
molecules98–100. The interaction of the carrier with the desired drug
greatly impacts drug loading, long-term shelf stability, and ultimately
release profile101. Polymers are also employed as excipients in drug
formulations which require materials that can reduce drug-drug
interactions42,102. Whereas current work has focused on adjusting
parameters of existing polymer systems, little emphasis has been
placed on ML polymer design with precise drug release profiles,
degradation behavior, and stimuli-responsiveness. Drug delivery and
polymer excipients represent a promising area for ML to flourish in
polymer design due to the small polymer quantity requirements
associated with characterizing the properties of interest. In the short-
term, existing high-throughput methods for the design of polymer
excipients byMann et al. could be extended to generate a dataset large
enough for ML to be applied meaningfully42.

Regenerative medicine scaffolds. ML has been employed in the
process optimization of scaffold preparation (e.g., bioprinting, elec-
trospun fibers), but remains largely unexplored with regards to com-
positional landscape. Notably, there is a lack of biocompatible
conducting materials for use in tissue scaffolds that mimic native tis-
sue electrical properties67. It is also particularly challenging toquantify,
and thus learn/predict some of the critical properties of polymeric
scaffolds, including cellular proliferation and differentiation103,104. In
particular, properties of interest to scaffolds for ML prediction will

include cellular adhesion and in-growth, porosity, and tissue
mechanics105. While data availability limits what can currently be done
in polymer design for scaffolds, mechanical properties are more
widely characterized and are relevant for this application. Thus,
existing datasets which contain a broader scope of polymers could be
adapted to ML approaches for polymer scaffold design.

Biologic sensing. Polymers have been used in biomedical sensing
applications as both polymer electronics and encapsulations of tradi-
tional electronic sensors106–108. As the former, polymeric systems have
been developed for strain and pressure sensing in applications such as
cardiac monitoring and intracranial pressure. Although deep learning
algorithms (e.g., CNN, HMM) have been applied to sense outputs such
as electrocardiogram data, there have not been systematic studies
relating material composition and device shape to targets, such as
sensitivity to external stimuli and conductivity109. As encapsulations,
properties such as inertness, water absorption, and water barrier
performance will greatly benefit from ML prediction and, ultimately,
the inverse design of novel polymer systems with these properties.
More widely characterized properties like conductivity and mechan-
ical properties are also relevant for sensing applications. Thus, as with
biomedical scaffolds, existing datasets may be adaptable for this
application.

Challenges and future directions. Current datasets for medically
relevant parameters, such as degradation time and water uptake, are
small, often exhibit non-standardizedmethods of characterization and
have not been publicly assembled. Thus, the extension ofMLmethods
to designing medically relevant polymers will require a paradigm shift
in data curation. More intentional data curation by journals or data
sharing by researchers can expand the possibilities of ML with medi-
cally relevant polymer synthesis without having to extract data byweb
scraping, which remains an ethically ambiguous task110–112. CRIPT is one
promising data sharing platform to this end pending researchers’
engagement. The development of molecular dynamic simulation
methods and high-throughput synthesis and characterization would
make applying ML to biomedical polymers possible within individual
groups. Standardization with respect to characterization, data analysis
and data presentation of biomedically important properties, such as
biocompatibility anddegradation time,would alsomake accumulating
larger datasets more feasible.

In addition to data availability concerns, more experimental vali-
dation of ML tasks would help establish the utility of these approaches
in a wet-lab environment as well as provide insight into the perfor-
mance of themodel. Current work in polymer chemistrymore broadly
has focused on widely available properties (e.g., thermomechanical
properties) and properties which are easily simulated (e.g., bandgap)—
some of which are relevant to biomedical applications.

Extending this existing work to new fields is an achievable way to
make progress toward expediting polymeric biomaterial design. Ulti-
mately, applied ML represents an extremely promising tool toward
accessing state-of-the-art of medically relevant polymers. This reality
can be accelerated through:
I. Widespread contribution by experimentalists to data sharing

platforms like CRIPT.
II. Standardization of the characterization of biomedically relevant

properties (e.g., degradation, water uptake).
III. Development of affordable, high-throughput methods for poly-

merization via step-growth mechanisms (i.e., the majority of
degradable polymers and minority of high-throughput
approaches).

IV. Incorporation of coding proficiency and an introduction to ML
methods as a part of chemistry curriculum.

V. Collaboration with ML experts and integration of ML methods
into current research efforts.

Property
Prediction

Candidate
Screening

Candidate
Generation

No Medical Application Medical Application

Count

Fig. 4 | Uses forML applied to polymerdesign. In each case, biomedical polymers
represent a minority of the approaches and are notably missing from candidate
generation strategies. The candidate screening methods shown here use property
prediction algorithms to choose promising polymers out of a subset of interest.
Thus, they differ from the property prediction category only in that their imple-
mentation goes a step further.
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